The generator matrix

 1  0  0  1  1  1  0  X  1 X^2  1  1  1  0  1  1  X  1  X  X  1  X  1  1  1  X X^2  1 X^2  1  1 X^2+X  1 X^2  1  1  X X^2  1 X^2+X  1  1  1 X^2+X  0 X^2  1  1 X^2+X  1  1  X  1  1  1  X  X  1  1  1  1  0  0  1  0  1  1 X^2  1 X^2+X  1  0  1  1 X^2+X  X  1  1  1  1  1  1  1  1  1  1  1  1 X^2 X^2+X  1  1  1
 0  1  0  0  1  1  1 X^2 X^2+1  1 X^2 X^2+X+1 X^2  1 X+1  0  1 X+1  0  1  0  1 X+1  X  X X^2+X  1 X+1  1 X^2+X X^2+X+1 X^2+X X^2+1  1 X^2+X X^2+X X^2  1 X^2  1 X^2  X  X  1  1  1  0  1  1 X^2 X^2+X+1  1 X+1  X  1  0  1 X^2+X+1 X^2 X^2+1 X^2+X  1 X^2+X X^2+1  X X^2+X  1  0 X^2+X+1  1 X+1  X X^2+1 X^2+1 X^2+X  1 X+1  0  X  X  1 X^2+X  0 X^2+X X^2+X+1  1  X X^2  1 X^2  X X^2+1 X^2+X+1
 0  0  1  1 X^2 X^2+1  1  1  0 X^2 X^2 X^2+1  1 X^2+1 X^2+X  X  X X^2+1  1 X^2+X+1 X^2+1 X^2+X+1  X X^2+X+1  X  1  X X+1  X X^2 X^2  1 X^2+X X^2+X+1  1  1  1 X^2+X X+1 X^2  0 X^2+X X^2 X^2 X^2 X+1  X  1  1 X^2+X+1 X^2+X+1  X X^2 X^2+X X+1  1 X^2 X^2 X+1 X^2+1  X X+1  1 X^2+X  1 X^2+X+1 X^2+X  1  X  1 X^2+X+1  1 X^2+X+1 X^2+X+1  1  X X+1  X  X X^2 X^2 X^2 X^2  1 X^2+X+1 X^2+X X^2+X X^2+X+1  0  1  1 X+1 X^2+X+1
 0  0  0  X  0  X  X  X  X  X  X X^2 X^2 X^2 X^2 X^2 X^2+X  X X^2  0 X^2+X  X X^2+X  0 X^2 X^2+X  0  0  X  X  0 X^2 X^2  0 X^2+X  X X^2+X X^2+X X^2 X^2 X^2+X X^2+X X^2  0 X^2+X X^2  0 X^2+X  X  0  X X^2 X^2+X  0  0  0 X^2+X X^2 X^2+X  0  X  X X^2 X^2+X  0 X^2+X  X  X X^2+X X^2+X  X  X  X X^2  X  X X^2 X^2+X  0  X X^2 X^2 X^2 X^2  0  0  X X^2  X X^2+X X^2+X X^2+X  0

generates a code of length 93 over Z2[X]/(X^3) who�s minimum homogenous weight is 88.

Homogenous weight enumerator: w(x)=1x^0+334x^88+500x^90+387x^92+278x^94+178x^96+130x^98+109x^100+60x^102+39x^104+22x^106+6x^108+2x^110+2x^116

The gray image is a linear code over GF(2) with n=372, k=11 and d=176.
This code was found by Heurico 1.11 in 0.531 seconds.